当前位置:首页 > 篮球资讯 > 正文内容

2015-2016赛季NBA赛事比分简单数据分析

杏彩体育2年前 (2022-11-22)篮球资讯263

数据来源:某数据分析QQ群(群友下载于NBA官方网站)

原始数据比较简单,依次包含了比赛日期、比赛开始时间、客队、客队得分、主队、主队得分、个人比赛数据(Box Score)、是否有加时赛、备注等。虽然数据简单,但依然有非常大的分析空间。本文为了实践之前学习的R语言相关内容,只做了一项非常简单的数据分析。

导入数据

数据为CSV文件,直接使用R语言导入CSV文件的方法。

#导入csv数据 setwd("F:/Temporary") NBA_data <- read.table("NBA_data.csv", header = TRUE, sep = ",", colClasses = c("character", "character", "character", "character", "character", "character", "character", "character"), stringsAsFactors = FALSE)

其中,第二个参数header默认为FALSE,即数据框的列名为“V1,V2...”,设置为TRUE时以CSV文件的第一行作为列名。参数sep是分隔数据的分隔符,默认为空格,可以设置为逗号(sep=,),分号(sep=;)和制表符(tab)。参数colClasses 为每一列指定一个类,为了方便处理,先将所有的数据都指定为字符型(character)。由于字符型数据在读入时自动转换为因子,所以参数stringAsFactors=FALSE是为了防止导入的数据进行任何的因子转换。

具体可查阅《R语言实战(第2版)》第二章中“2.3.2 从带分隔符的文本文件导入数据”相关内容。关于如何导入Excel数据可以参考文章【R语言】:导入Excel数据 【R语言】:简单数据处理分析

数据预处理

一、重命名列名

为了方便处理,在导入数据时保留了文件中的第一行作为列名。

首先对原始数据进行初步分析:第一列比赛日期(Date)的列名无需更改;第二列为比赛开始时间,原列名包含有英文缩写ET,推测其为美国东部时间East Time的缩写,决定把列名更改为Start_time;第三列为客场或中立球队,更改为V_team;第四列是客队得分,更改为V_PTS;第五列是主场或中立球队,更改为H_team;第六列是主队得分,更改为H_PTS;第七列是详细的个人比赛数据,应该有内链,但没有抓取到,随后删除;第八列标记了是否进行了加时赛(如果有是OT,没有为空);第九列是备注,全部为空,随后删除。

#重命名列名 names(NBA_data) <- c("Date", "Start_time", "V_team", "V_PTS", "H_team", "H_PTS", "BS", "Overtime", "Notes")

二、删除无效数据和缺失值

1、删除第七列和第九列的无效数据

#删除第七列和第九列 NBA_data <- NBA_data[, c(-7, -9)]

可参考文章:【R语言】:基本数据管理(2)

2、删除观测的缺失值

比赛日期、客队、客队得分、主队、主队得分这五个列向量为空的数据都需要删除。

#删除观测(行)的缺失值,五个列向量为空的数据都需要删除 NBA_data <- NBA_data[!is.na(NBA_data$Date),] NBA_data <- NBA_data[!is.na(NBA_data$V_team),] NBA_data <- NBA_data[!is.na(NBA_data$V_PTS),] NBA_data <- NBA_data[!is.na(NBA_data$H_team),] NBA_data <- NBA_data[!is.na(NBA_data$H_PTS),]

应该能用更简单的代码来实现,但暂时不清楚,以后遇到了再补充更改。

三、处理日期、数据类型转换、数据排序

1、处理日期

比赛日期这一列包含的内容为星期(缩写)+月(缩写)+日(数字)+年(数字),利用函数str_split_fixed()将该列拆分为星期、月日年两列。

#处理日期 library("stringr") datesplit <- str_split_fixed(NBA_data$Date, " ", n=2)

这两列数据在随后数据分析中都有用,将在分析之前再跟实际需求分别赋值到数据框中。

2、数据类型转换

将比赛分数转换为数值格式,以便于之后的相关计算。

#数据类型转换 NBA_data$V_PTS <- as.numeric(NBA_data$V_PTS) NBA_data$H_PTS <- as.numeric(NBA_data$H_PTS)

3、数据排序

此外,原始数据已经按照比赛时间的升序排列,目前暂时不变,之后将根据需要另做排序。

简单数据分析

NBA整个赛季的比赛非常多,整个赛季总共近1300场比赛。可一个赛季下来,一周7天从星期一到星期天,到底联盟更喜欢把比赛安排到哪一天呢?会是周五晚上,还是周六晚上呢?还是其他某天晚上呢?

#另存一个新数据框NBA_days NBA_days <- NBA_data #把datesplit中的第一列“星期几”全部赋值给Date列 NBA_days$Date <- datesplit[, 1]

运行代码后可得

1、统计每天比赛的数量

#周一的比赛数量 NBA_Mon <- NBA_days[NBA_days$Date == "Mon",] Mon_num <- nrow(NBA_Mon) #同理可得周二到周日的比赛数量 NBA_Tue <- NBA_days[NBA_days$Date == "Tue",] Tue_num <- nrow(NBA_Tue) NBA_Wed <- NBA_days[NBA_days$Date == "Wed",] Wed_num <- nrow(NBA_Wed) NBA_Thu <- NBA_days[NBA_days$Date == "Thu",] Thu_num <- nrow(NBA_Thu) NBA_Fri <- NBA_days[NBA_days$Date == "Fri",] Fri_num <- nrow(NBA_Fri) NBA_Sat <- NBA_days[NBA_days$Date == "Sat",] Sat_num <- nrow(NBA_Sat) NBA_Sun <- NBA_days[NBA_days$Date == "Sun",] Sun_num <- nrow(NBA_Sun)

2、新建数据框,包含星期和天数(参考【R语言】:基本数据管理(1)

#新建数据框NBA_week NBA_week <- data.frame(WeekDays = c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"), WD_num = c(Mon_num, Tue_num, Wed_num, Thu_num, Fri_num, Sat_num, Sun_num))

3、2015-2016赛季NBA一周每天的比赛数量

#用函数barplot()画柱状图 P1 <- barplot(NBA_week$WD_num, width=1, space=NULL, names.arg = NBA_week$WeekDays, beside=TRUE, col=rainbow(14), col.axis="blue", col.lab="black", col.main="red", main = "2015-2016赛季NBA一周每天比赛数量", xlab="星期", ylab="比赛场次", ylim=c(0,300), axis.lty=1) #函数text()和函数minor.tick()调整文本和坐标轴刻度 text(P1, NBA_week$WD_num, NBA_week$WD_num, col = "black", pos=3) library(Hmisc) minor.tick(ny=5, tick.ratio = 0.5)

其中,关于函数text()和函数minor.tick()的详细用法可参考:【R语言】:图形初阶(3)

4、简单分析

NBA整个2015-2016赛季(包含常规赛和季后赛),在一周内周三晚上的比赛数量最多(竟然不是周末),其次是周五晚上,周一晚上和周六晚上的比赛数量一样多,并列第三。

后记

NBA的各项数据是一个非常大的数据宝藏,今天这个非常简单的数据分析的小例子,仅仅利用非常少量的数据以及非常简单的数据源。

稍微展开,就能想到更多复杂的分析,比如:

所有NBA球队常规赛(季后赛)主场(客场)平均得分(失分);

某支球队常规赛主场平均得分(失分)、客场平均得分(失分),季后赛主场平均得分(失分)、客场平均得分(失分);

某支球队常规赛(全部、主场、客场)的胜率、季后赛(全部、主场、客场)的胜率、包含加时赛(全部、主场、客场)胜率、得分(失分)上百(未上百)的比赛胜率;

某支球队周几的比赛胜率最高、几点开始的比赛胜率最高。

NBA数据几乎拥有无限多可以分析的点以及可以深挖的内容,并且NBA各支球队目前也非常重视各项数据,并且用于指导球队的技战术提升和比赛。

阅读更多

扫描二维码推送至手机访问。

版权声明:本文由杏彩体育-专注全球体育资讯发布,如需转载请注明出处。

本文链接:http://www.redirected.net/?id=12

“2015-2016赛季NBA赛事比分简单数据分析” 的相关文章

湖人10连败后詹姆斯主动揽责,一场篮球比分失败杀不死湖人

湖人10连败后詹姆斯主动揽责,一场篮球比分失败杀不死湖人

在今天结束的一场比赛中,湖人在主场不敌猛龙。7连胜被终结,今天猛龙打得太棒了,从首发到替补全部爆发。特别是布歇真特么厉害,还有杰弗森和猛龙的戴维斯,这替补三叉戟打得湖人摇头苦笑。...

「篮球」是一种什么样的运动?

「篮球」是一种什么样的运动?

概述 篮球运动是在一系列规则下双方队员以将球放入对方篮筐为目的的包含身体对抗的运动。起源于1891年,詹姆斯·奈史密斯(James Naismith,1861年11月6日—1939年11月)看见当地儿童喜欢用球投向桃子筐(当地盛产桃子,各家...

中国篮球不止眼前的苟且,还有少年在远方

中国篮球不止眼前的苟且,还有少年在远方

一场在美国球迷看来普普通通的NBA夏季联赛之后,4名中国篮球少年于场中并肩而立,从右往左分别是2000年的郭昊文和王泉泽、1999年的张镇麟和2003年的曾凡博,稚嫩的面庞中洋溢着追梦的幸福,举手投足间传递着对未来的自信。 就在那之前十几分钟,效力独行侠的郭昊文与效力太阳队的张镇麟...

Python爬取NBA虎扑球员数据

Python爬取NBA虎扑球员数据

虎扑是一个认真而有趣的社区,每天有众多JRs在虎扑分享自己对篮球、足球、游戏电竞、运动装备、影视、汽车、数码、情感等一切人和事的见解,热闹、真实、有温度。 受害者地址 https://nba.hupu.com/stats/players 本文知识点:系统分...

NBA│NBA推荐│​步行者vs鹈鹕│篮球推荐│篮球NBA

NBA│NBA推荐│​步行者vs鹈鹕│篮球推荐│篮球NBA

原标题:NBA│NBA推荐│​步行者vs鹈鹕│篮球推荐│篮球NBA NBA│NBA推荐│步行者vs鹈鹕│篮球推荐│篮球NBA NBA 步行者vs鹈鹕 2022-11-08 周二 08:45 印第安纳步行者 印第安纳步行者 步行者队在...

全网1.2亿人观看直播!快手“乡村篮球冠军杯”再现村BA盛况

全网1.2亿人观看直播!快手“乡村篮球冠军杯”再现村BA盛况

露天的篮球场上,来自基层村镇的篮球队员奔跑拼抢、激情对赛,角逐拖拉机冠军大奖;场边驻足围观的观众上有八十岁的老球迷、下有十几岁的青少年,现场还有闽南特色拉满的舞狮、提线木偶戏和南少林武术表演。9月16日、17日晚...